乐清电流互感器

生成日期: 2025-10-22

零序电流互感器与普通电流互感器都是按照电磁感应原理工作的,只是它们的工作状态不一样。普通电流互感器:普通电流互感器的一次线圈只穿过了被测量线路其中的一相导体,一次线圈内的电流就是该相的负载电流,二次电流则是一次电流的相应比值。零序电流互感器:零序电流互感器的一次线圈则穿过了被测量线路的三相导体。正常状态下,由于三相电流的矢量和为零,铁芯中不会产生磁通,故二次线圈内不会有感应电流。被保护回路发生单相接地故障时,三相电流的矢量和不再为零,此时互感器的铁芯中就会产生感应磁通,二次线圈内将有感应电流,从而启动继电器使保护装置动作。剩余电流互感器的安装接线方法是什么?乐清电流互感器

电流互感器的接线方式按其所接负载的运行要求确定。常用的接线方式为单相、三相星形和不完全星形三种。额定变比和误差:电流互感器的额定变比KN指电流互感器的额定电流比。即□KN=I1N/I2N电流互感器原边电流在一定范围内变动时,一般规定为10□120%I1N□副边电流应按比例变化,而且原、副边电压(或电流)应该同相位。但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。比差为经折算后的二次电流与一次电流量值大小之差对后者之比,即fl为电流互感器的比差。当KNI2>I1时,比差为正,反之为负。对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的值和角差均随电流增大来减小。乐清电流互感器电流互感器采用的是减极性接线,也就是说原线圈产生的磁链与副线圈交变产生的磁链是反向的。

电磁式电压互感器的分类方式很多,根据绝缘介质可分为干式和油式;根据相数的不同可分为单相、三相两种;根据绕组的多少可分为双绕组、三绕组、四绕组三种;按其运行承受的电压不同,可分为半绝缘和全绝缘电压互感器等等。在实际应用中一般使用单相三绕组或四绕组。若35kV母线电压互感器采用的为单相浇注绝缘的电磁式电压互感器,电磁式电压互感器的励磁特性为非线性特性,在35kV的电力系统中性点偏移、瞬间电弧接地或进行倒闸操作的激发下,都可能与电力系统分布的电容形成铁磁谐振,因此,采用的电磁式电压互感器都采用了消谐措施。随着电力系统输电电压的增高,电磁式电压互感器的体积越来越大的,成本随之增高,因此220kV电压等级宜采用电容式电压互感器。根据这一要求,我们采用220kV母线电容式电压互感器。

常见的电流互感器结构原理:电流互感器结构比较简单,由相互绝缘的初级线圈、二次线圈、铁芯及构架、外壳、接线端子等组成。它的工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联在电源线路上,一次负荷电流(I1)通过一次绕组,所产生的交变磁通感应产生比例减小的二次电流(I2)□二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,由于一次绕组与二次绕组有相等的安培匝数(N2)□电流互感器实际运行中负荷阻抗很小,因此二次绕组与变压器的短路状态相同。在原线圈中,电流方向与端电压方向相同,而在副线圈中,电流方向取决于感应电势,并与感应电势的方向相反。

电压互感器现场校验仪工作中,需要设备复杂,体积大,重量重,电压高,准备时间长,工作效率低下并有一定的安全隐患的实际情况。科学系统的研究电压互感器的特性,建立科学的理论模型在大量实验验证的基础上研制出HGQ-DY电压互感器现场校验仪。可满足用户对电压互感器的误差(比差、角差)的测量。具有精度高、稳定性好、体积小,重量轻的特点。执行标准:必须按照JJG1021-2007[]电力互感器》

和DL/T448-2000\\ 电能计量装置技术管理规程》进行了检验。开合式安装的互感器主要用于电力运维及用电

改造项目。乐清电流互感器

电缆终端处零序电流互感器的正确安装方式。乐清电流互感器

电流互感器二次绕组不允许开路,否则,将产生高电压,危及设备和运行人员的安全,同时因铁芯过热,有烧坏互感器的可能,电流互感器的误差也有所增大,因此,在二次回路上工作时,应先将电流互感器二次侧短路。电流互感器二次侧应有一端可靠接地,且接地点只有一个。以防止一、二次侧绝缘击穿时,造成对人身和设备的损坏。二次回路连接导线应采用铜质单芯绝缘线,严禁使用铝线,且中间不得有接头。电流二次回路的导线截面积应不小于4m_□.乐清电流互感器